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MULTIVARIATE LINEAR REGRESSION MODEL 

 

 

Consider a data set where we have n observations (cases) on m outcomes (dependent variables) 

with p explanatory variables (independent variables). 

 

This is where we have multiple dependent variables, so the dependent variables are represented 

by a matrix, Y, which has n (cases) rows and m (variables) columns. Y is an n  m matrix. 
 

Because of this, our regression coefficients, betas , are also in matrix form, since now there are 

beta coefficients for each predictor and for each outcome variable in the model. Similarly, we 

have a matrix of residuals, , since there are residuals for each person on each outcome variable. 

 

 

Y = X  +  
n  m n  (p+1) (p+1)  m  n  m 

 

 

Multiple Outcomes 

 

In most social science and educational settings, there are naturally multiple outcome variables 

(dependent variables). We typically do not engage in research to study a single outcome, 

although this might be the case. However, it’s more typical to study multiple outcomes.  

 

When we study academic achievement, we often look at multiple outcomes of achievement, 

including reading, writing, mathematics, and science. Or, we might look at multiple components 

of mathematics, including algebra, probability, and geometry. In social science settings, we may 

look at multiple components of personality, including neuroticism, extroversion, and openness – 

or even the big five personality factors. When we are interested in examining motivation, we 

may include activation, persistence, and intensity. 

 

The issue in empirical research, with a general linear model approach, is that these outcomes are 

correlated. If we examine each outcome with an independent model, results are not necessarily 

independent, which increases the study-wise Type-I error rate; we would suggest more 

statistically significant effects than are likely to exist in the population because of the 

dependence across the independent GLMs. 

 

Multivariate statistics include a class of models that simultaneously include multiple variables, 

typically considering those variables as outcomes or dependent variables. This is different than a 

model like multiple regression – where there are multiple predictors. Multivariate regression 

includes the case where there are multiple outcomes, typically as well as multiple predictors. 

 

Multivariate statistical models include multivariate regression and multivariate analysis of 

variance (MANOVA) – otherwise known as GLM. Other common models include factor 

analysis, principal components analysis, discriminant analysis, canonical correlations, cluster 

analysis, and others. 
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The matrix results we observed for regression and the general linear model with a single 

outcome dependent variable work in the multivariate context. Given the multivariate GLM: 

 

Y = X +  

 

We can solve for the regression coefficient matrix: 

 

 = (X  X)
-1

 X  Y 

 

 = Y – X  

 

 = (Y – X ) (Y – X )   error SSCP 

 

 

OLS Solution 

 

In the typical GLM, our task is to find the ordinary least-squares solution. This means that our 

task is to minimize the sum of the squared residuals. The OLS estimators are best linear unbiased 

estimates (BLUE) when the errors are homoscedastic and serially uncorrelated. 

 

The OLS task in the multivariate model is to minimize the trace of the error SSCP matrix, : 

 

trace[(Y – X ) (Y – X )] 

 

Also, OLS estimates of  minimize the generalized variance (determinant): 

 

|(Y – X ) (Y – X )| 

 

We can then consider the decomposition of variance or sums of squares: 

 

There is a predicted value for each outcome. The predicted values vector is: 

 

Ŷ  = Xβ̂  = X(XX)
-1

XY 

 

There is a residual for each outcome. The residual vector is: 

 

YYε ˆˆ  = [I-X(XX)
-1

X]Y 
 

The sums of squares are: 

 

Y Y = ( Ŷ +ε̂ ) ( Ŷ +ε̂ ) = Ŷ  Ŷ  + ε̂ ε̂  + 0 + 0 = SSR + SSE = SST 

 


